Central CO-heme oxygenase pathway raises body temperature by a prostaglandin-independent way.

نویسندگان

  • A A Steiner
  • L G Branco
چکیده

Recently, the carbon monoxide (CO)-heme oxygenase pathway has been shown to play an important role in fever generation by acting on the central nervous system, but the mechanisms involved have not been assessed. Thus the present study was designed to determine whether prostagandins participate in the rise in body temperature (T(b)) observed after induction of the CO-heme oxygenase pathway in the central nervous system. Intracerebroventricular (ICV) injection of heme-lysinate (152 nmol/4 microl), which is known to induce the CO-heme oxygenase pathway, caused an increase in T(b) [thermal index (TI) = 5.3 +/- 0.5 degrees C. h], which was attenuated by ICV administration of the heme oxygenase inhibitor ZnDPBG (200 nmol/4 microl; TI = 2.5 +/- 1.7 degrees C. h; P < 0.05). No change in T(b) was observed after intraperitoneal injection of the cyclooxygenase inhibitor indomethacin (5 mg/kg), whereas indomethacin at the same dose attenuated the fever induced by ICV administration of lipopolysaccharide (LPS) (10 ng/2 microl) (vehicle/LPS: TI = 4.5 +/- 0.5 degrees C. h; indomethacin/LPS: TI = 1.7 +/- 1.0 degrees C. h; P < 0.05). Interestingly, indomethacin did not affect the rise in T(b) induced by heme-lysinate (152 nmol/4 microl) ICV injection (vehicle/heme: TI = 4.5 +/- 1.4 degrees C. h; indomethacin/heme: TI = 4.2 +/- 1.0 degrees C. h). Finally, PGE(2) (200 ng/2 microl) injected ICV evoked a rise in T(b) that lasted 1.5 h. The heme oxygenase inhibitor ZnDPBG (200 nmol/4 microl) failed to alter PGE(2)-induced fever. Taken together, these results indicate that the central CO-heme oxygenase pathway increases T(b) independently of prostaglandins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AREGU August 46/2

Steiner, Alexandre A., Eduardo Colombari and Luiz G. S. Branco. Carbon monoxide as a novel mediator of the febrile response in the central nervous system. Am. J. Physiol. 277 (Regulatory Integrative Comp. Physiol. 46): R499–R507, 1999.—Heme oxygenase catalyzes the metabolism of heme to biliverdin, free iron, and carbon monoxide (CO), which has been shown to be an important neuromodulatory agent...

متن کامل

Carbon monoxide as a novel mediator of the febrile response in the central nervous system.

Heme oxygenase catalyzes the metabolism of heme to biliverdin, free iron, and carbon monoxide (CO), which has been shown to be an important neuromodulatory agent. Recently, it has been demonstrated that lipopolysaccharide (LPS) can induce the enzyme heme oxygenase in glial cells. Therefore, the present study was designed to test the hypothesis that central CO plays a role in LPS-induced fever. ...

متن کامل

Effects of mild hypothermia on expression of NF-E2-related factor 2 and heme-oxygenase-1 in cerebral cortex and hippocampus after cardiopulmonary resuscitation in rats

Objective(s): The aim of this study was to investigate the effects of mild hypothermia on expression of NF-E2-related factor 2 (Nrf2) and heme-oxygenase-1 (HO-1) of rat cerebral cortex and hippocampus after cardiopulmonary resuscitation and further investigate the possible mechanism of action. Material and Methods:To copy an asphyxia heart arrest model, Sprague Dawley rats were randomly divided...

متن کامل

نقش سیستم هم اکسیژناژ بر روی رشد تومور ملانوما در موش های نژاد C57Bl6

Background and Objective: Some evidence about the relationship between heme oxygenase and many cancers is available. Heme oxygenase has anti-apoptotic effects and contributes to tumor growth. The aim of this study was to evaluate the effect of heme oxygenase on melanoma tumor cells mitosis and tumor size in C57BL/6 mice. Materials and Methods: B16F10 melanoma cells were injected subcutaneously ...

متن کامل

Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats.

Recent studies suggest that carbon monoxide (CO), which is produced in significant quantities in many brain regions, may function as a neurotransmitter. Heme oxygenase catalyzes the metabolism of heme to CO and biliverdin; however, the physiological role of CO in central cardiovascular regulation was not well understood. In the present study, we evaluated the baroreflex response of CO in the nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 88 5  شماره 

صفحات  -

تاریخ انتشار 2000